26=-16t^2+52

Simple and best practice solution for 26=-16t^2+52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 26=-16t^2+52 equation:



26=-16t^2+52
We move all terms to the left:
26-(-16t^2+52)=0
We get rid of parentheses
16t^2-52+26=0
We add all the numbers together, and all the variables
16t^2-26=0
a = 16; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·16·(-26)
Δ = 1664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1664}=\sqrt{64*26}=\sqrt{64}*\sqrt{26}=8\sqrt{26}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{26}}{2*16}=\frac{0-8\sqrt{26}}{32} =-\frac{8\sqrt{26}}{32} =-\frac{\sqrt{26}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{26}}{2*16}=\frac{0+8\sqrt{26}}{32} =\frac{8\sqrt{26}}{32} =\frac{\sqrt{26}}{4} $

See similar equations:

| 5x-7=3(x-3) | | n=-7+(-10)+7 | | 1/5p=6 | | |3-6w|=39 | | 24x+3=10x+7 | | 4y+9-2y=2+y-2 | | 8.7x=37.41 | | 1x+3=8x+4 | | 9f-11=14f+49f−11=14f+4 | | 3(b-4)+5=b | | 4x–5=2x+11 | | 7x-8+4x+2=71 | | x-2=5-(x-2) | | 3(b-4)=+5b | | 10e-14=3(3e-3) | | 3x+4x=X+52 | | 2x+9=-4-27 | | 3/6=12/n | | (16x-4)+(14x+4)=180 | | -58=22-10j | | 4-5=2x-12 | | 3+8x=2121-x | | 2x-6➗=3 | | 1/2x+2/3x+5=1/3 | | 46+10x=6-2(1-8x) | | 30x-8=180 | | -6x+-8=12 | | 5y+2+3y+7=49 | | -6x-8=12 | | -6x+60=30 | | -4(x-8)=-5x | | 16/x+9=8/3 |

Equations solver categories